TUTORIAL-3

Q-1:-A register is defined as \qquad
a) The group of latches for storing one bit of information
b) The group of latches for storing n-bit of information
c) The group of flip-flops suitable for storing one bit of information
d) The group of flip-flops suitable for storing binary information

Answer: d

Explanation: A register is defined as the group of flip-flops suitable for storing binary information. Each flip-flop is a binary cell capable of storing one bit of information. The data in a register can be transferred from one flip-flop to another.
$>$ For a bus system to multiplex k registers of n bits each
$>$ No. of multiplexer $=\mathrm{n}=$ No. of bits
> Size of each multiplexer $=\mathrm{k} \times 1$, k data lines in each MUX
$>$ Construction of bus system for 8 register with 16 bits
>16 bit register X 8
> 16 MUX 8 X1 multiplexer-- NO OF MUX REQUIRED
$>$ Bus selection SO, S1, S2

Q2-A Digital computer has a common bus system for 16 registers of 32bits each.
(i)How many selection inputs are there in each multiplexer?
(ii)What size of multiplexer is needed
(iii)How many multiplexers are there in a bus?
(iv)How many data lines are there in each multiplexer?

$$
\begin{aligned}
& \text { Common bus system for } 16 \text { registers } \\
& \text { of } 32 \text { bits each. }
\end{aligned}
$$

(I) How many selection inputs are there in
so el:- $2^{x}=$ no. of registers
$\Rightarrow x$ selection inputs of each MUX
$\therefore 2^{x}=16$
\Rightarrow here, $x=4$
$\therefore 4$ selection inputs lines in each MUX
(II) What size of MUX needed?

Sol':- Size of $M U X=$ Total no. of registers x $\therefore 16 \times 1$ MU
(III) How many multiplexers are there in
a bus?

Sol ${ }^{n}$: - No of $M U X=$ bits in each register $=32$
$\therefore 32$ MUX are needed in a bus.
(II) How many data lines in each multiplexer?
sob ${ }^{7}$:- data lines $=$ Input lines in each MUX
size of $M U X=16 \times 1$
$\therefore 16$ data lines in each $M U X$.

- Q3--Show by hardware implementation:

$$
y T_{2}: R 2<-R 1, \quad R 1<-R 2
$$

Answer-2

QUESTION-4:-

The 8 bit register $A R, B R, C R, D R$ initially have the following values DR---11101010
AR---11110010
BR---11111111
CR---10111001
Determine the 8 bit values in each register after the execution of the following sequence of micro-operations

```
    AR<---AR+BR
CR<-----CR ^ DR, BR<-------BR+1
AR<------AR-CR
```

$\frac{n \omega \omega R-\frac{1+1}{00000000}}{A R \leftarrow A R-C R}\left\{\begin{array}{l}\text { Because every micro- } \\ \text { operation execution }\end{array}\right.$ new *ै *ै new CR $\begin{aligned} & \text { operation execution } \\ & \text { is in sequence. }\end{aligned}$
$A R-11110001 \quad$ means one after

$$
C R-10101000^{-}
$$

$$
\begin{aligned}
& \text { AR-11110010 CR-10111001 } \\
& B R-11111111 \quad D R-11101010 \\
& A R \Leftarrow A R+B R \\
& \begin{array}{l}
A R-11110010 \\
B R=11111111+
\end{array} \\
& \text { new } A R-\frac{11111111}{11110001} \\
& C R \leftarrow C R \wedge D R \\
& \begin{array}{l}
C R-10111001 \\
D R-1110101^{\prime} \wedge(A N D)
\end{array} \\
& B R \longleftarrow B R+1 \\
& B R-11111111
\end{aligned}
$$

Votes

$$
\begin{array}{r}
C R-10101000 \\
\overline{C R}-01010111 \\
+1 \\
\hline 01011000
\end{array}
$$

$$
A R+\overline{C R}+1
$$

$$
\therefore \quad A R \rightarrow 11110001
$$

$$
\overline{C R}+1 \rightarrow \frac{01011000^{+}}{\underline{01001001}}
$$

$$
\text { finally, } A R=01001001
$$

$$
\therefore A R \longleftarrow A R-C R
$$

Subtraction with $(A+\bar{B}+1)$ me thad So $A R-C R$

$$
\Rightarrow A R+\overline{C R}+1
$$

Q-5:-

What are the three output conditions of a three-state buffer?
a) HIGH, LOW, High-Z
b) High-Z, 0, float
c) Negative, positive, 0
d) 1, Low-Z, float

Q6- The 4 bit adder subtractor circuit has the following values for input mode M and data inputs A and B . In each case, determine the values of the outputs- $\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$ and C_{4}

	\mathbf{M}	\mathbf{A}	\mathbf{B}	$\mathrm{S}_{3} \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$	C 4
\mathbf{I}	0	0111	0110	1101	0
II	0	1000	1001	0001	1
III	1	1100	1000	0100	1
$\mathbf{I V}$	1	0101	1010	1011	0
\mathbf{V}	1	0000	0001	1111	0
$\mathbf{V I}$	1	0100	0001	0011	1
$\mathbf{V I I}$	0	0010	0010	0100	0
$\mathbf{V I I I}$	1	0110	0100	0010	1
$\mathbf{I X}$	0	0010	0110	1000	1
\mathbf{X}	1	0101	10	0011	1

Q-6:-
Which micro operations carry information from one register to another:
a. Register transfer
b. Arithmetic
c. Logical
d. All of these

Q-7:-
Micro operation is shown as:

a. $\mathbf{R 1} \rightarrow \mathbf{R} 2$
 b. $\mathbf{R} 1 \leftarrow \mathbf{R} 2$

c. Both
d. None

Q-8:
Which operation is binary type, and are performed on bits string that placed in register:

A- Logical micro operation
B- Arithmetic micro operation
C- Both
D- None

Q9-A Digital computer has a common bus system for 4 registers of 2 bits each.
(i)What size of multiplexer is needed?
(ii)How many multiplexers are there in a bus?
(iii)How many data lines in each multiplexer?
(iv)How many selection inputs are there in each multiplexer?
(v) DRAW block diagram of required common bus using MUX, along with function table

FUNCTION TABLE

S_{1}	S_{0}	Register
0	0	A
0	1	B
1	0	C
1	D	

