TUTORIAL-3

Q-1:-A register is defined as _____

a) The group of latches for storing one bit of informationb) The group of latches for storing n-bit of informationc) The group of flip-flops suitable for storing one bit of informationd) The group of flip-flops suitable for storing binary information

Answer: d

Explanation: A register is defined as the group of flip-flops suitable for storing binary information. Each flip-flop is a binary cell capable of storing one bit of information. The data in a register can be transferred from one flip-flop to another.

Connecting Registers - Bus Transfer

- \succ For a bus system to multiplex k registers of n bits each > No. of multiplexer = n = No. of bits
 - > Size of each multiplexer = k x 1, k data lines in each MUX

- Construction of bus system for 8 register with 16 bits
 - > 16 bit register X 8
 - > 16 MUX 8X1 multiplexer NO OF MUX REQUIRED
 - Bus selection S0, S1, S2 \succ

4

Q2-A Digital computer has a common bus system for 16 registers of 32bits each.

(i) How many selection inputs are there in each multiplexer?

(ii)What size of multiplexer is needed

(iii)How many multiplexers are there in a bus?

(iv)How many data lines are there in each multiplexer?

c

• Q3—-Show by hardware implementation: yT₂: R2<- R1, R1<- R2

Answer-2

QUESTION-4:-

The 8 bit register AR, BR, CR, DR initially have the following values DR---11101010 AR---11110010 BR---11111111 CR---10111001 Determine the 8 bit values in each register after the execution of the following sequence of micro-operations AR<---AR+BR CR<-----BR+1 AR<----AR-CR

AR - 11110010 rules FIRSTTIME FIRSTTIM Notes BR -1111111 LIGE SLISTERN SCR. SURGINI CR-10111001 CR - 10101000 AR - AR + BR DR-11101010 CR - 01010111 AR - 11110010 a such the section with the BR - 1111111+ mero AR - 11110001 01011000 CRECRADR REPERTS TUDES AR+CR+1 CR-10111001 DR-1110101 AR->11110001 \wedge (AND) 0 9 new CR - 10101000 CR+1 -> 01011000 $BR \leftarrow BR + 1$ 01001001 finally, AR = 01001001 BR-1111 new BR - 00000000 +1 : AR - AR-CR. $AR \leftarrow AR - CR$ Because every micronewAR newCR ou multiplexess never these is operation execution is in sequence. AR - 11110001 means one after and the second of the second state - 100 another 2 CR - 10101000 11% we needed in Lang. data lines in each multipliere Subtraction with (A+B+i) method LUNG ADDE AD BEAR ENDER TO BARDA THE 180 AR - CR =) AR + OR +1 an and in carto HILLE

Q-5:-

What are the three output conditions of a three-state buffer?

a) HIGH, LOW, High-Z b) High-Z, 0, float c) Negative, positive, 0 d) 1, Low-Z, float

Q6- The 4 bit adder subtractor circuit has the following values for input mode M and data inputs A and B . In each case , determine the values of the outputs- $S_3S_2S_1S_0$ and C_4

	Μ	Α	В	S
I	0	O111	O110	
II	0	1000	1001	
	1	1100	1000	
IV	1	0101	1010	
V	1	0000	0001	
VI	1	O100	0001	
VII	0	0010	0010	
VIII	1	O110	O100	
IX	0	0010	10 0110	
X	1	0101	10	

SOLUTION

	Μ	Α	B	$S_3S_2S_1S_0$	C4
	0	O111	O110	1101	0
	0	1000	1001	0001	1
	1	1100	1000	O100	1
IV	1	0101	1010	1011	0
V	1	0000	0001	1111	0
VI	1	O100	0001	0011	1
VII	0	0010	0010	O100	0
VIII	1	O110	O100	0010	1
IX	0	0010	O110	1000	1
X	1	O101	10	0011	1

Q-6:-Which micro operations carry information from one register to another:

a. Register transferb. Arithmeticc. Logicald. All of these

Q-7:-Micro operation is shown as:

a. R1→R2 b. R1←R2 c. Both d. None

Q-8: Which operation is binary type, and are performed on bits string that placed in register:

- A-Logical micro operation B-Arithmetic micro operation C-Both
- D-None

Q9-A Digital computer has a common bus system for 4 registers of 2 bits each.

(i)What size of multiplexer is needed?

(ii) How many multiplexers are there in a bus?

(iii)How many data lines in each multiplexer?

along with function table

- (iv)How many selection inputs are there in each multiplexer?
- (v) DRAW block diagram of required common bus using MUX,

COMPLETE DIAGRAM YOURSELF

FUNCTION TABLE

